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New complex embedded systems are 

quick to take advantage of the unrelenting 
pace of advancement in computer 
hardware performance and capacity.  
Along with the increase in hardware 
capability has come a considerably greater 
increase in the functionality and 
complexity of the software in control.   

Unfortunately, the methods & tools we 
use to develop and test systems and 
software have not kept up with the trend.  
This is evidenced by number of software 
faults that pass undetected into the 
integration and operational phases of 
contemporary projects.   

This is of concern for two important 
reasons.  In the case of software in control 
of safety- or mission-critical systems, 
allowing a failure to pass undetected into 
the operational phase of a project may put 
lives and/or critical missions at risk.  In all 
cases the more faults that pass undetected 
into integration test and beyond, the more 
the project will cost and the longer it will 
take to complete.   

This article presents a new, closed-loop 
method of simulating and verifying 
embedded system designs and their 
controlling software in a pure virtual 
system integration laboratory environment.  
We have demonstrated and validated this 
method in a recently concluded research 
effort sponsored by the NASA Office of 
Safety & Mission Assurance under their 
Software Assurance Research Program 
(SARP) [1].  Our investigation showed: 

1. A new method of specifying, 
executing, and verifying an entire system 
design in a pure virtual environment.   

2. How uninstrumented embedded 
object software can be verified in the 
virtual system environment.   

3. How the same tests used to verify 
the system design may be used to verify 
the controlling software.   

It follows from item 3 that if the 
software passes the same tests used to 
verify the system design then it correctly 
implements the known and tested system 
requirements.  As a result, we now have a 
viable means of discovering requirements-
induced software faults prior to the 
integration test phase of a project.  This is 
significant because it has been shown that 
early discovery of faults reduces both 
project cost and duration.   

Background 

Root causes of software faults 
The root causes of the majority of 

software defects discovered in integration 
test during the development of an 
embedded system have been attributed to 
errors in understanding and implementing 
requirements (see: JPL Root-Cause 
Analysis of Spacecraft Software Defects).  
These may be the system and/or the 
software requirements.  We assert that this 
is largely a result of the independence that 
exists between the requirements 
development and the software 
development processes.   

The JPL report findings are echoed in 
reports of numerous other researchers such 
as Leveson [2] [3], Ellis [4], Thompson 
[5], et al.  Consider some of the many 
avenues where requirements-related 
problems might be introduced: 
 Assumptions/ambiguities affecting the 

interpretation of customer descriptions 
of desired system behavior. 

 The difficulty in fully understanding 
the real-world environment in which 

the system will interact. 
 The difficulty in anticipating all of the 

possible modes and states that the 
system may encounter. 

 The difficulty in thoroughly validating 
& verifying requirements. 

 Capturing accurate, unambiguous 
representations of requirements in a 
written document. 

 Misinterpretation of system-level 
requirements by software designers. 

 The difficulty in verifying that the 
design has correctly implemented the 
requirements. 

To compound the problem, we 
generally cannot know at the onset of a 
project if we have accurately modeled the 
real-world system behavior.  As a project 
advances, however, so does our 
understanding of the system.  Additional 
faults may be introduced when subsequent 
refinements to the system model are not 
adequately communicated to the software 
development teams.  To be more effective 
at creating software with a high level of 
assurance, not only must we reduce the 
number of errors attributable to 
misunderstanding & misimplementing 
requirements, but we must also improve 
communication between and among the 
system & implementation teams.   

Shortcomings of federated 
development methods 

Contemporary embedded systems 
development projects are typically 
conducted in a federated manner.  In other 
words, the system and software 
development activities are conducted 
essentially independent of each other.  To 
illustrate this point, Figure 2 depicts the 

Research has shown that finding software faults early in the development cycle not only improves software 
assurance, but also reduces software development expense and time.  The root causes of the majority of 
embedded system software defects discovered during hardware integration test have been attributed to errors 
in understanding and implementing requirements.  The independence that typically exists between the system 
and software development processes provides ample opportunity for the introduction of these types of faults.  
This article shows a viable method of verifying object software using the same tests created to verify the system 
design from which the software was developed.  After passing the same tests used to verify the system design, it 
can be said that the software has correctly implemented all of the known and tested system requirements.  This 
method enables the discovery of functional faults prior to the integration test phase of a project.   
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three principal loops comprising a typical 
project process.  We will ignore hardware 
development activities since they are not 
germane to this discussion.   

The first loop is where the system 
design is created.  The system designers 
may make use of modeling, simulation, 
prototyping, specification, and other tools 
to satisfy the need to validate control 
algorithms, component interactions, etc.  
The system architects validate and verify 
their design through analysis, possibly 
tests, and possibly by similarity with 
reused components.  They then document 
the requirements for the implementation 
teams to follow.  When satisfied with their 
design (or when time runs out), the system 
team delivers the system specification 
package to the implementation teams.   

Entering the second loop shown in 
Figure 2, the software implementation 
team interprets the relevant requirements – 
whether written in natural language, 
specification design language, or 
executable specifications – derives 
software requirements, and creates its 
design.  The software developers write 
their own tests to verify conformance to 
the requirements as they have interpreted 
them.  They may use some form of 
simulation, hardware development boards, 
inspection, analysis, or similarity 
comparison to facilitate verification of 
their code.   

When a major part of the system 
functionality has been coded, the software 
team creates a build.  The software is 
loaded into its target hardware where 
integration test begins in the laboratory.  
Connected to test equipment, simulators, 
and perhaps other system elements, the 
control software is stimulated by the 
hardware environment under the control of 
custom test software.  Bugs discovered 
during integration test are filed as problem 
reports and passed back to the 
development team to resolve, thereby 

completing the third loop.   
We see the independence that exists 

between the system and software loops in 
this development process as the primary 
reason for the propagation of software 
faults into integration test.  Further, this 
independent process may breed duplicity 
of effort where the software and system 
teams write their own tests to verify the 
same behavior at the system and software 

levels.   
Our research has shown a method of 

connecting the system and software 
development loops that allows tests 
written for system verification to be used 
to verify the software itself.  This enables 
the software to be thoroughly debugged in 
a pure virtual environment before it ever 
gets to the hardware integration phase.   

Coupling the System & SW 
development loops 

Figure 3 illustrates our approach to 
connecting the system and software 
development loops.  This new approach 
retains the system and software 
development loops but eliminates the loop 
where the hardware integration lab is used 
for software debug activities.   

As before, your project begins with the 
development of a system design using 
various tools for algorithm development 
etc.  However, in lieu of passing the design 
and requirements to the implementation 
teams as a collection of disparate 

JPL Root-Cause Analysis of Spacecraft Software Defects 
In 1992, Dr. Robyn Lutz conducted an analysis for the Jet Propulsion 

Laboratory (JPL) to determine the root causes of the 387 software defects 
discovered during the integration test phase of the Voyager and Galileo spacecraft 
development efforts.  The software controlling these spacecraft is distributed 
among several embedded computers with roughly 18,000 and 22,000 lines of 
source code respectively.  Lutz reported that the programming faults discovered on 
the two projects are distributed as shown in figure 1. 

The fault classifications given in figure 1 are defined as follows: 
 Functional faults comprise the three subclasses listed below: 

a. Operating faults: omission of, or unnecessary operations;  
b. Conditional faults: incorrect condition or limit values; and 
c. Behavioral faults: incorrect behavior, not conforming to requirements.

 Interface faults are those related to 
interactions with other system com-
ponents such as transfer of data or control.   

 Internal faults are defined as coding faults 
internal to a software module  

The data show that 98% of the combined total 
software problems were classified as functional 
or interface faults that are directly attributable to 
errors in understanding & implementing 
requirements, and inadequate communication 
between development teams.  Only 2% were due 
to software module coding errors [6].   

The conclusions of the JPL report point to the 
need for improved focus in the following areas: 

1. Interfaces between the software and the system domains 
2. Identification of safety-critical hazards early in the requirements analysis 
3. Use of formal [and unambiguous] specification techniques 
4. Promotion of informal communication among teams 
5. Keeping development & test teams apprised of changes to requirements 
6. Inclusion of requirements for “defensive design” 
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specifications, the entire system and the 
environment in which it interacts is 
simulated using a form of executable 
specifications (ES).  All parts in the 
simulation are bounded like their real-
world counterparts so that the interface 
behavior of each element can be correctly 
modeled and specified.  Parts are created 
with built-in failure modes that may be 
activated under test control.   

Having modeled the behavior of the 
entire system environment, you now have 
a complete virtual system integration 
laboratory (VSIL) in which to validate and 
verify your system design.  The next step 
is to create a suite of tests based upon 
nominal and off-nominal scenarios for 
which the system has been designed to 
react.  Our testing philosophy is to 
exercise the system by driving the 
environment as realistically as possible, 
and monitoring the system behavior in 
response.  This is generally not a viable 
approach for hardware system integration 
laboratory setups due to the costs or 
difficulty involved in procuring, creating, 
and synchronously controlling all the 
disparate pieces of hardware and 
simulators necessary to realistically drive 
the target system.   

The completed and verified VSIL is 
then passed, along with the system-level 
tests and any supplemental written 
requirements, to the development teams.  
The teams create hardware and software 
designs from the specified processing, 
communication, interface, control, and 
other requirements.  As soon as the 
hardware architecture has been 
established, the target embedded controller 
for which the software is being developed 
must be simulated with sufficient fidelity 
to run the unmodified object software.  
Because the simulated controller hardware 
is bounded (i.e. it has identical interfaces) 
like the ES part from which it was 
developed, it may be plugged into the 
VSIL in place of its ES counterpart.  We 
refer to this controller hardware simulation 
part as a detailed executable (DE) (Fig. 3).   

The DE gives the SW team the ability 
test the SW it develops (Fig. 3, step 1) in 
the VSIL (Fig. 3, steps 2-4).  After 
replacing the controller ES with the DE, 
the software being developed may be 
compiled and loaded into the DE at any 
time for testing in the VSIL.  All of the 
tests created to verify the system design 
can be used, without modification, for 
software verification.  Additional tests 
must be added to verify that software has 
correctly implemented lower-level 

requirements whose detail hasn’t been 
addressed at the system level (e.g. built-in-
test, etc.).   

After running the desired tests, the 
software development team analyzes the 
results and determines the cause of any 
failures.  The team then corrects any 
identified faults, recompiles the revised 
modules, and retests the build in the VSIL 
(Fig. 3, steps 1-4).  In practice, step 3 is 
performed once since the DE becomes an 
integral part of the VSIL following 
replacement of its ES counterpart.  The 
VSIL is tightly coupled with the integrated 
SW development environment used by the 
SW team - thereby facilitating the 
code/compile/load/verify process.   

Some of the problems discovered may 
require the attention of the system 
designers.  When this necessitates a 
system design change, the VSIL is revised 
& tested and redistributed to the SW 

development teams.  In this manner, the 
software is always developed & tested in 
the most current system design – thereby 
eliminating the possibility of SW problems 
being introduced due to miscommunica-
tion of system design changes.   

The SW design/code/verify/debug loop 
is repeatedly executed until the final build 
passes all tests and until all paths through 
the code have been exercised in the VSIL.  
The software has thus been thoroughly 
verified and is ready for integration testing 
with the real flight hardware.   

It is worth noting that since the object 
code itself is tested in the VSIL, the real-
time operating system (RTOS), any 
reused/COTS modules, and all newly 
developed software are verified together in 
the virtual target environment.  The VSIL 

itself is an MS Windows-compatible 
application that interfaces with standard 
integrated development environment 
(IDE) tools.  A VSIL is as easily used as a 
typical lab test setup (e.g. emulator, 
simulators, target hardware), and readily 
distributed to all project development 
personnel.  Since the entire system and 
environment are modeled in the VSIL, 
modifications & refinements can be coded, 
validated, verified, and distributed to the 
entire team.  VSIL revisions and 
verification tests may be controlled using 
standard configuration management tools 
& techniques.  Lastly, the VSIL is purely 
virtual i.e. no hardware is required other 
than the Windows-based PC on which it 
runs.   

Discussion 
We have presented a new method of 

embedded systems and software V&V that 

closes the loop between system & software 
development activities.  In so doing, the 
system and software development 
processes can now be connected through 
common verification tests.   

Finding and repairing software faults 
early in the project development cycle can 
lead to substantial savings (see: Economics 
of Faultfinding).  For example, 
requirements and communication induced 
errors like 98% of those discovered during 
the integration phase of the Voyager & 
Galileo spacecraft software project, can be 
found and repaired at one or perhaps more 
orders of magnitude lower cost.   

Implications 
Below is a summary list of some of the 

ways that the methods presented in this 

Figure 3: Closed-Loop Software Verification in Virtual System Integration Lab 
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Economics of Faultfinding 
Estimates of the cost to find and correct software faults at each of the principal stages of a project have been publicized and 

widely referenced since 1976 when Boehm first published his study [7] on the subject.  Cost numbers vary depending on the type 
of application for which the software is being developed but the common thread they all exhibit is the substantial increase in 
project costs caused by carrying problems from one development stage to the next.   

A report released in May 2002 by the National Institute of Standards & Technology (NIST) [8] contains a thorough analysis 
concluding that inadequate software testing costs the United States an estimated $59.5 billion annually.  The 309-page NIST 
report is a well-considered treatise on the economic impact of inadequate software testing.   

While these numbers are extrapolated from software developed for the financial services and transportation applications 
(CAD, CAM, etc.) sectors, the message applies even more significantly to industries engaged in developing software for safety 
and mission critical applications such as aerospace, medical, defense, automotive, etc.  Failures of safety/mission-critical software 
may result in harm to, or loss of human life and/or mission 
objectives such as in the case of the Therac-25 radiation overdose 
accidents [2] and the Ariane-5 maiden launch failure [9].  The 
Therac-25 software caused severe radiation burns in numerous 
cancer patients before it was implicated.  The cost of allowing the 
Ariane-5 software defect to pass into the operational phase has 
been estimated to be as high as $5 billion alone.   

NASA recently sponsored a study to evaluate the economic 
benefit of conducting Independent Validation & Verification 
(IV&V) during the development of safety-critical embedded 
systems [10].  This study presented cost-to-repair figures focused 
specifically on embedded systems projects.  Figure 4 shows the 
relative cost to repair factors – considered to be conservative 
estimates for embedded systems – used in this study.   

The graph in Figure 4 tells us that an error introduced in the 
requirements phase will cost five times more to correct in the 
design phase than in the phase in which it was introduced.  
Correspondingly, it will cost ten times more to repair in the code 
phase, 50 times more in the test phase, 130 times more in the 
integration phase, and 368 times more when repaired during the 
operational phase.  The graph also gives the cost multipliers for 
problems introduced in the design, code, test, and integration 
phases of the development cycle.   
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article may be of economic benefit to 
embedded software development: 
a. Discovery of system errors early in the 

development cycle where it is least 
costly to correct them.   

b. Reduce interpretation-induced SW 
faults due to ambiguities in system 
requirements.   

c. Improve ability for dynamic, non-
invasive test of system & software 
response to failure conditions.   

d. Reduce software faults caused by 
breakdown in communication of 
system requirements changes.   

e. New capacity for empirical software 
V&V in cases where analysis was only 
viable means, for example: realistic 
fault injection & failure mode testing, 
complex digital signal processor 
designs, et al.   

f. Provide a highly viable means of 
verifying automatically generated code, 
reused software, and RTOS.   
Creating a system design with the type 

of ES discussed herein results in a 

verifiable system architecture that is 
readily translated into component-, and 
interface-level designs.  When contracting 
out the development of subsystem 
software, the system-level verification 
tests can provide an excellent way to 
assure that the contractor has developed 
the software correctly.   

Because ES parts may be created with 
intrinsic failure modes that can be invoked 
dynamically under test control, the system 
designer can empirically verify the 
specified system response to a variety of 
off-nominal conditions.  This ability 
allows greater latitude in the type and 
number of tests that can be conducted 
when compared with what is economically 
viable in a hardware integration lab.   

Verifying the VSIL 
The VSIL is, in fact, a model of both 

the system being developed and the 
environment in which it is designed to 
interact.  Before it can be of use we must 
have confidence that the VSIL represents 

its target adequately.   
We have adopted an effective approach 

that is perhaps best described as “test-as-
you-go.”  As parts are simulated to 
implement specific requirements, system-
level tests are created at the same time to 
verify that they behave correctly.  Part 
functionality may be developed and tested 
incrementally as requirements are 
implemented.  At the end of this process, 
all VSIL parts have been implemented & 
verified and a basic set of system-level 
tests have been developed.   

Parts developed to a high-fidelity level 
may require a supplemental verification 
activity where the real-world equivalent 
part is used for comparison purposes.  In 
the case of developing an instruction-set-
level CPU simulation, we run test code 
designed to verify instruction execution on 
a hardware development board and 
compare the results with the outcome of 
running the same code on the simulated 
part.  The CPU parts we’ve developed are 
not cycle-accurate but are refined to where 



the instructions execute within an average 
of four percent of the hardware 
performance (works well for embedded 
software verification).  This is in keeping 
with our philosophy of not implementing 
greater fidelity than necessary.   

VSIL Development Tool 
Triakis developed its first avionics 

simulator more than a decade ago to save 
time verifying software modifications and 
to avoid contention for lab test resources.  
This initiative spawned the creation of 
IcoSim, Triakis’ general-purpose 
simulator development tool, and its 
companion SW developer’s kit (SDK).   

The IcoSim SDK is typically available 
at no cost to customers availing 
themselves of Triakis' VSIL development 
services.  In the second half of 2005, 
however, Triakis plans to make IcoSim 
freely available to the general public by 
turning IcoSim into an open source project 
[11] whose use will be governed under 
either a General Public License (GPL) [12] 
and/or a Lesser General Public License 
(LGPL) [13].   

Tool Description 
Triakis currently gives IcoSim away 

and since it is destined to become an open 
source project, the descriptive details 
provided herein are intended to promote an 
understanding how we accomplish what 
we’ve presented.   

Written in C++ and C, IcoSim allows 
the use of diverse part types ranging from 
low to high abstraction levels.  It also 
supports the use of mixed mode parts such 
as analog, digital, mechanical, hydraulic, 
magnetic, electro-magnetic, et al.   

IcoSim is well suited to creating a 
VSIL for use in developing embedded 
systems & software because the simulated 
parts may be bounded exactly like their 
real-world counterparts.  In other words 
the inputs and outputs of each virtual part 
are readily modeled after the behavior of 
their real-world part’s digital, analog, 
mechanical, etc. I/O.  Once its behavior is 
verified, a virtual part may be identified 
with the same part number as its 
counterpart, and repeatedly used wherever 
system designs specify.   

VSIL Parts Libraries 
In addition to the NASA research that 

validated the methodology presented, this 
tool has been used to create VSILs for 
software verification on more than two-
dozen avionics projects over the past 
decade.  It is scalable to any size system 

and has been used for verification of 
software in single and dual-redundant 
avionics systems ranging in criticality 
from DO-178B, level A (safety-critical) to 
level D (low criticality).  It has also been 
used for verification of embedded digital 
signal processor (DSP) software 
implementing Kalman filter algorithms.   

Triakis’ parts library includes 
instruction-set level simulations of many 
microprocessors in use today such as the 
MPC555, MPC750, RAD6000, MC68000, 
MC68332, DSP56005, DSP56302, 
DSP56309, I80196, I8051, I8096, I8097, 
I8798, et al.  Numerous additional 
peripheral and “glue” parts are in the 
library as well as a host of actuators and 
sensors that have been created in support 
of various VSIL projects.  Triakis has also 
created a collection of parts that simulate 
many different data buses and protocols 
e.g.: ARINC 419, ARINC 739, MIL-STD-
1553, TTP, ASCB, CSDB, AFDX, 
Ethernet, SPI, PCI, etc. 

To support testing with a VSIL, we 
have simulated standard laboratory test 
equipment such as oscilloscopes, signal 
generators, and the functional capability of 
microprocessor emulators.  The VSIL is an 
ideal environment for gathering dynamic 
software metrics without instrumenting 
either the target operating system or the 
software.  Code path coverage, MCDC 
reports, throughput analysis, timing 
analysis, and many other helpful reports 
are readily produced in this environment 
with the addition of instructions to the test 
script.   

Costs of VSIL Development 
A VSIL is made by interconnecting 

objects at the lowest level of abstraction to 
make successively higher levels of 
functional parts until the required 
environment is complete.  This 
hierarchical, modular approach maximizes 
the potential for part reuse on subsequent 
development projects.   

To be efficient at making a VSIL, each 
part is simulated only to the level of 
fidelity necessary to achieve ones goals.  
For example an aircraft rudder is attached 
to a sensor that reports its angular position 
to avionics subsystems as required.  The 
sensor has a mechanical link to the rudder, 
has inertial properties, may have inductive 
coils, an armature, be excited by a 400 Hz 
reference, etc.   

While we could model all of these 
characteristics with great precision, it 
would be a waste of effort if our system 
only required the correct transfer function 

of rudder angle to sensor output at a given 
update rate.  Since part fidelity is directly 
proportional to effort, being selective 
about where to incorporate higher fidelity 
is key to cost-effective VSIL creation.   

It is difficult to quantify the costs of 
creating a VSIL for system and SW 
development because of the large number 
of variables involved such as: 
 System size 
 System complexity 
 Number of parts to be simulated 
 Number of CPUs to be simulated 
 Experience of simulation engineer(s) 

Because of the part-oriented nature of 
the VSIL, the cost of creating a simulator 
for a given project will vary in proportion 
to the number and complexity of new parts 
that must be created.  Many new 
embedded designs reuse proven design 
elements from prior projects so the cost of 
developing simulators diminishes with 
successive applications.   

Supplemental VSIL Benefits 
The benefit of using a VSIL for 

embedded systems & software 
development increases with project size, 
with system complexity, and with 
geographic diversity of organizations and 
personnel contributing to the project. 

In addition to the cost benefits of early 
SW fault discovery, a VSIL can support a 
project in other important ways.  Some of 
these benefits are directly measurable but 
others may have less tangible value.  For 
example:  
 When contracting out development of a 

subsystem, supplying the vendor with a 
VSIL and its system test suite can be a 
highly effective means of verifying that 
the SW conforms to the requirements.   

 Development teams in local and remote 
locations can quickly re-verify their 
SW following system revisions that 
have been implemented & tested in a 
VSIL.  Using standard configuration 
control procedures, the latest system 
revision can be distributed to all teams 
as soon as it is available.   

 Providing a VSIL to every programmer 
promotes a broader, “big-picture” 
understanding of the system.  Every 
programmer tests on the whole system, 
every time.   

 Testing in a VSIL reduces the 
dependence on laboratory test stations; 
consequently, fewer are required.   

 Less dependence on laboratory test 
equipment reduces resource-contention 
delays during development.   



About the Authors 
Paul W. Wennberg, 
President and founder of 
Triakis Corp., conceived 
and created IcoSim, the 
pure virtual environment 
simulator tool discussed 
in this article.   

A US Air Force veteran, Paul logged 
over 1400 hours piloting T38 and 
KC135 aircraft prior to completing his 
service with the rank of Captain.  He has 
a BSEE from the University of 
Washington, has over 20 years 
experience in the design and test of 
embedded systems hardware and 
software, and pioneered this new 
methodology.  
 

Triakis Corporation 
16149 Redmond Way 
Suite 177 
Redmond, WA 98052 
Phone: 425-861-3860 
Fax: 425-558-4241 
E-mail: paul.wennberg@triakis.com 
Web site: http://www.triakis.com 

Ted L. Bennett, Director 
of Systems Engineering & 
Business Development at 
Triakis Corp., received 
his BSEE from the 
University of Wisconsin –
Madison.   

He has over 25 years experience in 
embedded HW and SW design, systems 
engineering, project management, and 
business development in the aerospace 
industry.  Ted was Principal Investigator 
for the NASA-sponsored research 
project that validated the break-through 
methodology presented in this article.  
He is also Principal Investigator on two 
additional NASA research grants 
currently being conducted by Triakis.   
 

Triakis Corporation 
16149 Redmond Way 
Suite 177 
Redmond, WA 98052 
Phone: 425-558-4241 
Fax: 425-558-4241 
E-mail: ted.bennett@triakis.com 

 A VSIL may be helpful in the 
operational phase of a project for: 
 Software re-verification following 

upgrade modifications with full 
regression testing.   

 Re-verifying SW on obsolescence-
driven hardware design changes. 

 Verification of system compatibility 
with upgrades to peripheral or 
subsystem units. 

 Eliminating or reducing reliance on 
test equipment set-ups that must be 
maintained to support SW changes 
following entry into service. 

While not a rigorous analysis, one 
avionics company’s post-project review of 
having used a VSIL for verification of 
their dual-redundant avionics SW revealed 
some attractive cost-benefits.  Based on 
their findings they concluded that future 
projects could expect a 24% schedule 
savings, $130,000 direct savings on 
laboratory equipment, and realize an 
overall cost savings of 14% on an average 
$4.5 Million project.  These estimates do 
not take into account the benefits afforded 
by a VSIL throughout the operational life 
of a product.  There are many factors that 
influence the cost but a typical VSIL can 
be developed for about 5-10 percent of the 
overall project cost.  This places the return 
on investment in the range of 40-180 
percent for the above project. 

Experiences will no doubt vary from 

project to project, however, these 
estimates can provide useful guidance 
when assessing the life-cycle cost/benefit 
of using a VSIL for development.    

Summary 
The new method of embedded systems 

and software V&V presented here goes far 
beyond an incremental improvement to the 
status quo.  While not a panacea, it does 
provide a cost-effective, proven means of:   
 Ensuring that the target software has 

implemented all known and tested 
system requirements – prior to 
hardware integration.   

 Verifying automatically generated 
code, reused software, and the RTOS.   

 Verifying response of systems & 
software to a wide range of realistic, 
dynamic failures and off-nominal 
scenarios.   

 Re-verifying software following system 
revisions & updates.   

 Ensuring that hardware redesigned for 
obsolescence is compatible with the 
software.   

 Verifying that new and upgraded 
peripherals and subsystems function 
correctly with the target system.   

The approach described provides a bridge 
between algorithm & model development 
tools, and the real-world system 
environment in which embedded 
algorithms must function.  This method is 

a highly viable way to address a number of 
problems that hamper efficient embedded 
systems & software development. 
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