
Eliminating Embedded Software Defects Prior to Integration Test

New complex embedded systems are

quick to take advantage of the unrelenting
pace of advancement in computer
hardware performance and capacity.
Along with the increase in hardware
capability has come a considerably greater
increase in the functionality and
complexity of the software in control.

Unfortunately, the methods & tools we
use to develop and test systems and
software have not kept up with the trend.
This is evidenced by number of software
faults that pass undetected into the
integration and operational phases of
contemporary projects.

This is of concern for two important
reasons. In the case of software in control
of safety- or mission-critical systems,
allowing a failure to pass undetected into
the operational phase of a project may put
lives and/or critical missions at risk. In all
cases the more faults that pass undetected
into integration test and beyond, the more
the project will cost and the longer it will
take to complete.

This article presents a new, closed-loop
method of simulating and verifying
embedded system designs and their
controlling software in a pure virtual
system integration laboratory environment.
We have demonstrated and validated this
method in a recently concluded research
effort sponsored by the NASA Office of
Safety & Mission Assurance under their
Software Assurance Research Program
(SARP) [1]. Our investigation showed:

1. A new method of specifying,
executing, and verifying an entire system
design in a pure virtual environment.

2. How uninstrumented embedded
object software can be verified in the
virtual system environment.

3. How the same tests used to verify
the system design may be used to verify
the controlling software.

It follows from item 3 that if the
software passes the same tests used to
verify the system design then it correctly
implements the known and tested system
requirements. As a result, we now have a
viable means of discovering requirements-
induced software faults prior to the
integration test phase of a project. This is
significant because it has been shown that
early discovery of faults reduces both
project cost and duration.

Background

Root causes of software faults
The root causes of the majority of

software defects discovered in integration
test during the development of an
embedded system have been attributed to
errors in understanding and implementing
requirements (see: JPL Root-Cause
Analysis of Spacecraft Software Defects).
These may be the system and/or the
software requirements. We assert that this
is largely a result of the independence that
exists between the requirements
development and the software
development processes.

The JPL report findings are echoed in
reports of numerous other researchers such
as Leveson [2] [3], Ellis [4], Thompson
[5], et al. Consider some of the many
avenues where requirements-related
problems might be introduced:
 Assumptions/ambiguities affecting the

interpretation of customer descriptions
of desired system behavior.

 The difficulty in fully understanding
the real-world environment in which

the system will interact.
 The difficulty in anticipating all of the

possible modes and states that the
system may encounter.

 The difficulty in thoroughly validating
& verifying requirements.

 Capturing accurate, unambiguous
representations of requirements in a
written document.

 Misinterpretation of system-level
requirements by software designers.

 The difficulty in verifying that the
design has correctly implemented the
requirements.

To compound the problem, we
generally cannot know at the onset of a
project if we have accurately modeled the
real-world system behavior. As a project
advances, however, so does our
understanding of the system. Additional
faults may be introduced when subsequent
refinements to the system model are not
adequately communicated to the software
development teams. To be more effective
at creating software with a high level of
assurance, not only must we reduce the
number of errors attributable to
misunderstanding & misimplementing
requirements, but we must also improve
communication between and among the
system & implementation teams.

Shortcomings of federated
development methods

Contemporary embedded systems
development projects are typically
conducted in a federated manner. In other
words, the system and software
development activities are conducted
essentially independent of each other. To
illustrate this point, Figure 2 depicts the

Research has shown that finding software faults early in the development cycle not only improves software
assurance, but also reduces software development expense and time. The root causes of the majority of
embedded system software defects discovered during hardware integration test have been attributed to errors
in understanding and implementing requirements. The independence that typically exists between the system
and software development processes provides ample opportunity for the introduction of these types of faults.
This article shows a viable method of verifying object software using the same tests created to verify the system
design from which the software was developed. After passing the same tests used to verify the system design, it
can be said that the software has correctly implemented all of the known and tested system requirements. This
method enables the discovery of functional faults prior to the integration test phase of a project.

Ted Bennett and Paul Wennberg
Triakis Corporation

three principal loops comprising a typical
project process. We will ignore hardware
development activities since they are not
germane to this discussion.

The first loop is where the system
design is created. The system designers
may make use of modeling, simulation,
prototyping, specification, and other tools
to satisfy the need to validate control
algorithms, component interactions, etc.
The system architects validate and verify
their design through analysis, possibly
tests, and possibly by similarity with
reused components. They then document
the requirements for the implementation
teams to follow. When satisfied with their
design (or when time runs out), the system
team delivers the system specification
package to the implementation teams.

Entering the second loop shown in
Figure 2, the software implementation
team interprets the relevant requirements –
whether written in natural language,
specification design language, or
executable specifications – derives
software requirements, and creates its
design. The software developers write
their own tests to verify conformance to
the requirements as they have interpreted
them. They may use some form of
simulation, hardware development boards,
inspection, analysis, or similarity
comparison to facilitate verification of
their code.

When a major part of the system
functionality has been coded, the software
team creates a build. The software is
loaded into its target hardware where
integration test begins in the laboratory.
Connected to test equipment, simulators,
and perhaps other system elements, the
control software is stimulated by the
hardware environment under the control of
custom test software. Bugs discovered
during integration test are filed as problem
reports and passed back to the
development team to resolve, thereby

completing the third loop.
We see the independence that exists

between the system and software loops in
this development process as the primary
reason for the propagation of software
faults into integration test. Further, this
independent process may breed duplicity
of effort where the software and system
teams write their own tests to verify the
same behavior at the system and software

levels.
Our research has shown a method of

connecting the system and software
development loops that allows tests
written for system verification to be used
to verify the software itself. This enables
the software to be thoroughly debugged in
a pure virtual environment before it ever
gets to the hardware integration phase.

Coupling the System & SW
development loops

Figure 3 illustrates our approach to
connecting the system and software
development loops. This new approach
retains the system and software
development loops but eliminates the loop
where the hardware integration lab is used
for software debug activities.

As before, your project begins with the
development of a system design using
various tools for algorithm development
etc. However, in lieu of passing the design
and requirements to the implementation
teams as a collection of disparate

JPL Root-Cause Analysis of Spacecraft Software Defects
In 1992, Dr. Robyn Lutz conducted an analysis for the Jet Propulsion

Laboratory (JPL) to determine the root causes of the 387 software defects
discovered during the integration test phase of the Voyager and Galileo spacecraft
development efforts. The software controlling these spacecraft is distributed
among several embedded computers with roughly 18,000 and 22,000 lines of
source code respectively. Lutz reported that the programming faults discovered on
the two projects are distributed as shown in figure 1.

The fault classifications given in figure 1 are defined as follows:
 Functional faults comprise the three subclasses listed below:

a. Operating faults: omission of, or unnecessary operations;
b. Conditional faults: incorrect condition or limit values; and
c. Behavioral faults: incorrect behavior, not conforming to requirements.

 Interface faults are those related to
interactions with other system com-
ponents such as transfer of data or control.

 Internal faults are defined as coding faults
internal to a software module

The data show that 98% of the combined total
software problems were classified as functional
or interface faults that are directly attributable to
errors in understanding & implementing
requirements, and inadequate communication
between development teams. Only 2% were due
to software module coding errors [6].

The conclusions of the JPL report point to the
need for improved focus in the following areas:

1. Interfaces between the software and the system domains
2. Identification of safety-critical hazards early in the requirements analysis
3. Use of formal [and unambiguous] specification techniques
4. Promotion of informal communication among teams
5. Keeping development & test teams apprised of changes to requirements
6. Inclusion of requirements for “defensive design”

SYSTEM

Design/Analyze/Test

Model,
Simulate,
Prototype,

ES, etc.
SW

Interpretation

Requirements

Debug

Build

Integration
Test

Design/Analyze/Test

SYSTEM

Design/Analyze/Test

Model,
Simulate,
Prototype,

ES, etc.
SW

Interpretation

Requirements

Debug

Build

Integration
Test

Design/Analyze/Test

Figure 2: Federated development process

Figure 1: Fault Distribution

Functional
74%

Interface
24%

Internal 2%

Functional
74%

Interface
24%

Internal 2%

specifications, the entire system and the
environment in which it interacts is
simulated using a form of executable
specifications (ES). All parts in the
simulation are bounded like their real-
world counterparts so that the interface
behavior of each element can be correctly
modeled and specified. Parts are created
with built-in failure modes that may be
activated under test control.

Having modeled the behavior of the
entire system environment, you now have
a complete virtual system integration
laboratory (VSIL) in which to validate and
verify your system design. The next step
is to create a suite of tests based upon
nominal and off-nominal scenarios for
which the system has been designed to
react. Our testing philosophy is to
exercise the system by driving the
environment as realistically as possible,
and monitoring the system behavior in
response. This is generally not a viable
approach for hardware system integration
laboratory setups due to the costs or
difficulty involved in procuring, creating,
and synchronously controlling all the
disparate pieces of hardware and
simulators necessary to realistically drive
the target system.

The completed and verified VSIL is
then passed, along with the system-level
tests and any supplemental written
requirements, to the development teams.
The teams create hardware and software
designs from the specified processing,
communication, interface, control, and
other requirements. As soon as the
hardware architecture has been
established, the target embedded controller
for which the software is being developed
must be simulated with sufficient fidelity
to run the unmodified object software.
Because the simulated controller hardware
is bounded (i.e. it has identical interfaces)
like the ES part from which it was
developed, it may be plugged into the
VSIL in place of its ES counterpart. We
refer to this controller hardware simulation
part as a detailed executable (DE) (Fig. 3).

The DE gives the SW team the ability
test the SW it develops (Fig. 3, step 1) in
the VSIL (Fig. 3, steps 2-4). After
replacing the controller ES with the DE,
the software being developed may be
compiled and loaded into the DE at any
time for testing in the VSIL. All of the
tests created to verify the system design
can be used, without modification, for
software verification. Additional tests
must be added to verify that software has
correctly implemented lower-level

requirements whose detail hasn’t been
addressed at the system level (e.g. built-in-
test, etc.).

After running the desired tests, the
software development team analyzes the
results and determines the cause of any
failures. The team then corrects any
identified faults, recompiles the revised
modules, and retests the build in the VSIL
(Fig. 3, steps 1-4). In practice, step 3 is
performed once since the DE becomes an
integral part of the VSIL following
replacement of its ES counterpart. The
VSIL is tightly coupled with the integrated
SW development environment used by the
SW team - thereby facilitating the
code/compile/load/verify process.

Some of the problems discovered may
require the attention of the system
designers. When this necessitates a
system design change, the VSIL is revised
& tested and redistributed to the SW

development teams. In this manner, the
software is always developed & tested in
the most current system design – thereby
eliminating the possibility of SW problems
being introduced due to miscommunica-
tion of system design changes.

The SW design/code/verify/debug loop
is repeatedly executed until the final build
passes all tests and until all paths through
the code have been exercised in the VSIL.
The software has thus been thoroughly
verified and is ready for integration testing
with the real flight hardware.

It is worth noting that since the object
code itself is tested in the VSIL, the real-
time operating system (RTOS), any
reused/COTS modules, and all newly
developed software are verified together in
the virtual target environment. The VSIL

itself is an MS Windows-compatible
application that interfaces with standard
integrated development environment
(IDE) tools. A VSIL is as easily used as a
typical lab test setup (e.g. emulator,
simulators, target hardware), and readily
distributed to all project development
personnel. Since the entire system and
environment are modeled in the VSIL,
modifications & refinements can be coded,
validated, verified, and distributed to the
entire team. VSIL revisions and
verification tests may be controlled using
standard configuration management tools
& techniques. Lastly, the VSIL is purely
virtual i.e. no hardware is required other
than the Windows-based PC on which it
runs.

Discussion
We have presented a new method of

embedded systems and software V&V that

closes the loop between system & software
development activities. In so doing, the
system and software development
processes can now be connected through
common verification tests.

Finding and repairing software faults
early in the project development cycle can
lead to substantial savings (see: Economics
of Faultfinding). For example,
requirements and communication induced
errors like 98% of those discovered during
the integration phase of the Voyager &
Galileo spacecraft software project, can be
found and repaired at one or perhaps more
orders of magnitude lower cost.

Implications
Below is a summary list of some of the

ways that the methods presented in this

Figure 3: Closed-Loop Software Verification in Virtual System Integration Lab

1.
Develop

SW

System Team delivers:

Design

Hardware
Integration

Testing

3. Replace ES
Controller in
VSIL with DE

Simulation of
Embedded

Controller HW

CPU I/O

RAM

ROM

2. Load
Object
Software

Test
Results SW passes all

tests in VSIL

Build

Operational
Service

DE

4.
Test SW
in VSIL

Verify

Debug Code

• ES-Based VSIL
• V&V test suite

1.
Develop

SW

System Team delivers:

Design

Hardware
Integration

Testing

3. Replace ES
Controller in
VSIL with DE

Simulation of
Embedded

Controller HW

CPU I/O

RAM

ROM

2. Load
Object
Software

Test
Results SW passes all

tests in VSIL

Build

Operational
Service

DE

4.
Test SW
in VSIL

Verify

Debug Code

• ES-Based VSIL
• V&V test suite

Economics of Faultfinding
Estimates of the cost to find and correct software faults at each of the principal stages of a project have been publicized and

widely referenced since 1976 when Boehm first published his study [7] on the subject. Cost numbers vary depending on the type
of application for which the software is being developed but the common thread they all exhibit is the substantial increase in
project costs caused by carrying problems from one development stage to the next.

A report released in May 2002 by the National Institute of Standards & Technology (NIST) [8] contains a thorough analysis
concluding that inadequate software testing costs the United States an estimated $59.5 billion annually. The 309-page NIST
report is a well-considered treatise on the economic impact of inadequate software testing.

While these numbers are extrapolated from software developed for the financial services and transportation applications
(CAD, CAM, etc.) sectors, the message applies even more significantly to industries engaged in developing software for safety
and mission critical applications such as aerospace, medical, defense, automotive, etc. Failures of safety/mission-critical software
may result in harm to, or loss of human life and/or mission
objectives such as in the case of the Therac-25 radiation overdose
accidents [2] and the Ariane-5 maiden launch failure [9]. The
Therac-25 software caused severe radiation burns in numerous
cancer patients before it was implicated. The cost of allowing the
Ariane-5 software defect to pass into the operational phase has
been estimated to be as high as $5 billion alone.

NASA recently sponsored a study to evaluate the economic
benefit of conducting Independent Validation & Verification
(IV&V) during the development of safety-critical embedded
systems [10]. This study presented cost-to-repair figures focused
specifically on embedded systems projects. Figure 4 shows the
relative cost to repair factors – considered to be conservative
estimates for embedded systems – used in this study.

The graph in Figure 4 tells us that an error introduced in the
requirements phase will cost five times more to correct in the
design phase than in the phase in which it was introduced.
Correspondingly, it will cost ten times more to repair in the code
phase, 50 times more in the test phase, 130 times more in the
integration phase, and 368 times more when repaired during the
operational phase. The graph also gives the cost multipliers for
problems introduced in the design, code, test, and integration
phases of the development cycle.

R
qm

ts

D
es

ig
n

C
od

e

Te
st

In
te

g'
n

Rqmts
Design

Code
Test

Integration
Operational

368

64
37

7
3

130

26
13 3

1

50

10
5

110 2
15

1
1

0

50

100

150

200

250

300

350

400

Phase Defect Introduced

Ph
as

e
Re

pa
ire

d
Relative
Cost to
Repair

R
qm

ts

D
es

ig
n

C
od

e

Te
st

In
te

g'
n

Rqmts
Design

Code
Test

Integration
Operational

368

64
37

7
3

130

26
13 3

1

50

10
5

110 2
15

1
1

0

50

100

150

200

250

300

350

400

Phase Defect Introduced

Ph
as

e
Re

pa
ire

d
Relative
Cost to
Repair

Figure 4: Relative Cost of Software Fault Propagation

article may be of economic benefit to
embedded software development:
a. Discovery of system errors early in the

development cycle where it is least
costly to correct them.

b. Reduce interpretation-induced SW
faults due to ambiguities in system
requirements.

c. Improve ability for dynamic, non-
invasive test of system & software
response to failure conditions.

d. Reduce software faults caused by
breakdown in communication of
system requirements changes.

e. New capacity for empirical software
V&V in cases where analysis was only
viable means, for example: realistic
fault injection & failure mode testing,
complex digital signal processor
designs, et al.

f. Provide a highly viable means of
verifying automatically generated code,
reused software, and RTOS.
Creating a system design with the type

of ES discussed herein results in a

verifiable system architecture that is
readily translated into component-, and
interface-level designs. When contracting
out the development of subsystem
software, the system-level verification
tests can provide an excellent way to
assure that the contractor has developed
the software correctly.

Because ES parts may be created with
intrinsic failure modes that can be invoked
dynamically under test control, the system
designer can empirically verify the
specified system response to a variety of
off-nominal conditions. This ability
allows greater latitude in the type and
number of tests that can be conducted
when compared with what is economically
viable in a hardware integration lab.

Verifying the VSIL
The VSIL is, in fact, a model of both

the system being developed and the
environment in which it is designed to
interact. Before it can be of use we must
have confidence that the VSIL represents

its target adequately.
We have adopted an effective approach

that is perhaps best described as “test-as-
you-go.” As parts are simulated to
implement specific requirements, system-
level tests are created at the same time to
verify that they behave correctly. Part
functionality may be developed and tested
incrementally as requirements are
implemented. At the end of this process,
all VSIL parts have been implemented &
verified and a basic set of system-level
tests have been developed.

Parts developed to a high-fidelity level
may require a supplemental verification
activity where the real-world equivalent
part is used for comparison purposes. In
the case of developing an instruction-set-
level CPU simulation, we run test code
designed to verify instruction execution on
a hardware development board and
compare the results with the outcome of
running the same code on the simulated
part. The CPU parts we’ve developed are
not cycle-accurate but are refined to where

the instructions execute within an average
of four percent of the hardware
performance (works well for embedded
software verification). This is in keeping
with our philosophy of not implementing
greater fidelity than necessary.

VSIL Development Tool
Triakis developed its first avionics

simulator more than a decade ago to save
time verifying software modifications and
to avoid contention for lab test resources.
This initiative spawned the creation of
IcoSim, Triakis’ general-purpose
simulator development tool, and its
companion SW developer’s kit (SDK).

The IcoSim SDK is typically available
at no cost to customers availing
themselves of Triakis' VSIL development
services. In the second half of 2005,
however, Triakis plans to make IcoSim
freely available to the general public by
turning IcoSim into an open source project
[11] whose use will be governed under
either a General Public License (GPL) [12]
and/or a Lesser General Public License
(LGPL) [13].

Tool Description
Triakis currently gives IcoSim away

and since it is destined to become an open
source project, the descriptive details
provided herein are intended to promote an
understanding how we accomplish what
we’ve presented.

Written in C++ and C, IcoSim allows
the use of diverse part types ranging from
low to high abstraction levels. It also
supports the use of mixed mode parts such
as analog, digital, mechanical, hydraulic,
magnetic, electro-magnetic, et al.

IcoSim is well suited to creating a
VSIL for use in developing embedded
systems & software because the simulated
parts may be bounded exactly like their
real-world counterparts. In other words
the inputs and outputs of each virtual part
are readily modeled after the behavior of
their real-world part’s digital, analog,
mechanical, etc. I/O. Once its behavior is
verified, a virtual part may be identified
with the same part number as its
counterpart, and repeatedly used wherever
system designs specify.

VSIL Parts Libraries
In addition to the NASA research that

validated the methodology presented, this
tool has been used to create VSILs for
software verification on more than two-
dozen avionics projects over the past
decade. It is scalable to any size system

and has been used for verification of
software in single and dual-redundant
avionics systems ranging in criticality
from DO-178B, level A (safety-critical) to
level D (low criticality). It has also been
used for verification of embedded digital
signal processor (DSP) software
implementing Kalman filter algorithms.

Triakis’ parts library includes
instruction-set level simulations of many
microprocessors in use today such as the
MPC555, MPC750, RAD6000, MC68000,
MC68332, DSP56005, DSP56302,
DSP56309, I80196, I8051, I8096, I8097,
I8798, et al. Numerous additional
peripheral and “glue” parts are in the
library as well as a host of actuators and
sensors that have been created in support
of various VSIL projects. Triakis has also
created a collection of parts that simulate
many different data buses and protocols
e.g.: ARINC 419, ARINC 739, MIL-STD-
1553, TTP, ASCB, CSDB, AFDX,
Ethernet, SPI, PCI, etc.

To support testing with a VSIL, we
have simulated standard laboratory test
equipment such as oscilloscopes, signal
generators, and the functional capability of
microprocessor emulators. The VSIL is an
ideal environment for gathering dynamic
software metrics without instrumenting
either the target operating system or the
software. Code path coverage, MCDC
reports, throughput analysis, timing
analysis, and many other helpful reports
are readily produced in this environment
with the addition of instructions to the test
script.

Costs of VSIL Development
A VSIL is made by interconnecting

objects at the lowest level of abstraction to
make successively higher levels of
functional parts until the required
environment is complete. This
hierarchical, modular approach maximizes
the potential for part reuse on subsequent
development projects.

To be efficient at making a VSIL, each
part is simulated only to the level of
fidelity necessary to achieve ones goals.
For example an aircraft rudder is attached
to a sensor that reports its angular position
to avionics subsystems as required. The
sensor has a mechanical link to the rudder,
has inertial properties, may have inductive
coils, an armature, be excited by a 400 Hz
reference, etc.

While we could model all of these
characteristics with great precision, it
would be a waste of effort if our system
only required the correct transfer function

of rudder angle to sensor output at a given
update rate. Since part fidelity is directly
proportional to effort, being selective
about where to incorporate higher fidelity
is key to cost-effective VSIL creation.

It is difficult to quantify the costs of
creating a VSIL for system and SW
development because of the large number
of variables involved such as:
 System size
 System complexity
 Number of parts to be simulated
 Number of CPUs to be simulated
 Experience of simulation engineer(s)

Because of the part-oriented nature of
the VSIL, the cost of creating a simulator
for a given project will vary in proportion
to the number and complexity of new parts
that must be created. Many new
embedded designs reuse proven design
elements from prior projects so the cost of
developing simulators diminishes with
successive applications.

Supplemental VSIL Benefits
The benefit of using a VSIL for

embedded systems & software
development increases with project size,
with system complexity, and with
geographic diversity of organizations and
personnel contributing to the project.

In addition to the cost benefits of early
SW fault discovery, a VSIL can support a
project in other important ways. Some of
these benefits are directly measurable but
others may have less tangible value. For
example:
 When contracting out development of a

subsystem, supplying the vendor with a
VSIL and its system test suite can be a
highly effective means of verifying that
the SW conforms to the requirements.

 Development teams in local and remote
locations can quickly re-verify their
SW following system revisions that
have been implemented & tested in a
VSIL. Using standard configuration
control procedures, the latest system
revision can be distributed to all teams
as soon as it is available.

 Providing a VSIL to every programmer
promotes a broader, “big-picture”
understanding of the system. Every
programmer tests on the whole system,
every time.

 Testing in a VSIL reduces the
dependence on laboratory test stations;
consequently, fewer are required.

 Less dependence on laboratory test
equipment reduces resource-contention
delays during development.

About the Authors
Paul W. Wennberg,
President and founder of
Triakis Corp., conceived
and created IcoSim, the
pure virtual environment
simulator tool discussed
in this article.

A US Air Force veteran, Paul logged
over 1400 hours piloting T38 and
KC135 aircraft prior to completing his
service with the rank of Captain. He has
a BSEE from the University of
Washington, has over 20 years
experience in the design and test of
embedded systems hardware and
software, and pioneered this new
methodology.

Triakis Corporation
16149 Redmond Way
Suite 177
Redmond, WA 98052
Phone: 425-861-3860
Fax: 425-558-4241
E-mail: paul.wennberg@triakis.com
Web site: http://www.triakis.com

Ted L. Bennett, Director
of Systems Engineering &
Business Development at
Triakis Corp., received
his BSEE from the
University of Wisconsin –
Madison.

He has over 25 years experience in
embedded HW and SW design, systems
engineering, project management, and
business development in the aerospace
industry. Ted was Principal Investigator
for the NASA-sponsored research
project that validated the break-through
methodology presented in this article.
He is also Principal Investigator on two
additional NASA research grants
currently being conducted by Triakis.

Triakis Corporation
16149 Redmond Way
Suite 177
Redmond, WA 98052
Phone: 425-558-4241
Fax: 425-558-4241
E-mail: ted.bennett@triakis.com

 A VSIL may be helpful in the
operational phase of a project for:
 Software re-verification following

upgrade modifications with full
regression testing.

 Re-verifying SW on obsolescence-
driven hardware design changes.

 Verification of system compatibility
with upgrades to peripheral or
subsystem units.

 Eliminating or reducing reliance on
test equipment set-ups that must be
maintained to support SW changes
following entry into service.

While not a rigorous analysis, one
avionics company’s post-project review of
having used a VSIL for verification of
their dual-redundant avionics SW revealed
some attractive cost-benefits. Based on
their findings they concluded that future
projects could expect a 24% schedule
savings, $130,000 direct savings on
laboratory equipment, and realize an
overall cost savings of 14% on an average
$4.5 Million project. These estimates do
not take into account the benefits afforded
by a VSIL throughout the operational life
of a product. There are many factors that
influence the cost but a typical VSIL can
be developed for about 5-10 percent of the
overall project cost. This places the return
on investment in the range of 40-180
percent for the above project.

Experiences will no doubt vary from

project to project, however, these
estimates can provide useful guidance
when assessing the life-cycle cost/benefit
of using a VSIL for development.

Summary
The new method of embedded systems

and software V&V presented here goes far
beyond an incremental improvement to the
status quo. While not a panacea, it does
provide a cost-effective, proven means of:
 Ensuring that the target software has

implemented all known and tested
system requirements – prior to
hardware integration.

 Verifying automatically generated
code, reused software, and the RTOS.

 Verifying response of systems &
software to a wide range of realistic,
dynamic failures and off-nominal
scenarios.

 Re-verifying software following system
revisions & updates.

 Ensuring that hardware redesigned for
obsolescence is compatible with the
software.

 Verifying that new and upgraded
peripherals and subsystems function
correctly with the target system.

The approach described provides a bridge
between algorithm & model development
tools, and the real-world system
environment in which embedded
algorithms must function. This method is

a highly viable way to address a number of
problems that hamper efficient embedded
systems & software development.

References
1. Bennett, T.L., Wennberg, P.W. “The Use of

a Virtual System Simulator and Executable
Specifications to Enhance Software
Validation, Verification, and Safety
Assurance – Final Report.” Software
Assurance Research Program Results Web
Site. NASA IV&V Facility. Fairmont, West
Virginia. June 2004.
<http://sarpresults.ivv.nasa.gov/ViewResear
ch/285/32.jsp> (19 Jan. 2005).

2. Leveson, N.G. Safeware - System, Safety
and Computers. Addison Wesley. 1995.

3. Leveson, N.G. “Software safety: What, why
and How.” ACM Computing Surveys.
1986: 18(2).

4. Ellis, A. “Achieving Safety in Complex
Control Systems.” Proceedings of the
Safety-Critical Systems Symposium.
Springr-Verlag: Brighton, England, 1995:
pp. 2-14.

5. Thompson, J.M. A Framework for Static
Analysis and Simulation of System-level
Inter-component Communication. Masters
Thesis: University of Minnesota, 1999.

6. Lutz, R.R. Analyzing Software Errors in
Safety-Critical, Embedded Systems. Jet
Propulsion Laboratory: California Institute
of Technology, Pasadena, CA. 1994.

7. Boehm, B.W. “Software Engineering.”
IEEE Transactions on Computer. 1976: SE-
1(4): 1226-1241.

8. Tassey, G. The Economic Impacts of
Inadequate Infrastructure for Software
Testing. National Institute of Standards &
Technology.2002.<http://www.nist.gov/dire
ctor/prog-ofc/report02-3.pdf> (19 Jan.
2005).

9. Leveson, N.G. “The Role of Software in
Spacecraft Accidents.” AIAA Journal of
Spacecraft and Rockets, Vol. 41, No. 4,
July 2004.

10. Dabney, J.B. “Return on Investment of
Independent Verification and Validation
Study Preliminary Phase 2B Report.”
Software Assurance Research Program
Results Web Site. NASA IV&V Facility.
Fairmont, West Virginia. 2003.
<http://sarpresults.ivv.nasa.gov/ViewResear
ch/289/24.jsp> (19 Jan. 2005).

11. Details about open-source projects may be
found at: <http://sourceforge.net/> (19 Jan.
2005).

12. General Public License agreement:
<http://www.opensource.org/licenses/gpl-
license.php> (19 Jan. 2005).

13. Lesser General Public License agreement:
<http://www.opensource.org/licenses/lgpl-
license.php> (19 Jan. 2005).

mailto:paul.wennberg@triakis.com
http://www.triakis.com
mailto:ted.bennett@triakis.com
http://sarpresults.ivv.nasa.gov/ViewResear
http://www.nist.gov/dire
http://sarpresults.ivv.nasa.gov/ViewResear
http://sourceforge.net/
http://www.opensource.org/licenses/gpl-
http://www.opensource.org/licenses/lgpl-

